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A b&act: Tris(3,6-di-r-butyl-I-azulenyl)methyl (5). tri(3-t-butyl-1-azulenyl)methyl (10). and tri(6-f-butyl-l- 
azuknyl)methyl (11) bexatluomphoqhtes were. syqdkzed. Their p&+ vales wexe deknnhd as 14.3.13.2, and 
13.7, twpectively, and the value of 5 showed the highest one as carbocation ever repotled. The extreme stability of 
methyl catiou 5 is mainly attributable to stwic effects of six bulky kbutyl gmups in addition to the ccmtribution of 
dipoh strwlwe of thlec azulelE rings. 

The syntheses of extremely stable cyclic hydrocarbon carbocation 1 @KR+ 13.5),’ which consists of 

Uopylium ion annelated with three bicyclo[2.2.2]octene units, ui(3-guaiazulenyl)cyclopropenylium ion @KR+ 

>10)2, and tricyclopmpylcyclopropenylium ion @Ku+ lO.Og have been reported We recently reporn& that 

the synthesis of a series of azulene analogs (2,3,4) of triphenylmethyl cation, and that these cations showed 

extraordinary high pKu+ values (e.g. 2, R = H, 11.3; R = Me, 11.4) as methyl cations. We also mported the 

analogous stable dication spe~ies.~ 

PF; 

R 

0 PF,’ 

1 2 3 4 

In order to enhance the stability of these triaxulenylmethyl cations (2), we introduced bulky r-butyl groups 

to each of the three axulene rings. t-Butyl groups am expected stabilize 2 by their steric effects, and also by their 

inductive effects induced by the contribution of C-C hyperconjugation. 
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Here we report the synthesis of tris(3,ddi-f-butyl-1-azulenyl)methyl hexafluorophosphate (5), which 

shows pKR+ 14.3 the highest value ever reported, and also report the synthesis of tri(3-f-butyl-l-azulenyl)- and 

tri(6+butyl- 1 -azulenyl)methyl cations. 

The synthesis of the cation 5 was accomplished as follows. The reaction of 1,6-di-t-butylazulene (7)6, 

which was obtained by r-butylation’ of 6-r-butylazulene (6).* and 1,6-d&f-butylazulene-e-3-carboxaldchydc (@ in 

acetic acid at room temperature afforded tris(3.bdi-f-butyl-l-azulenyI)methane (9)6 in 71% yield. Hydride 

abstraction of 9 with DDQ in CH2Clz followed by addition of 60% HPF6 solution yielded 5 in quantitative yield. 

Scheme I a 
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* (a) r-BuC1. AICl3. CH2CI2, mom temperature, 30 min. 52%; @) pOCl3, DMF, mom temperature, 30 min, 83%: (c) AcOH, 
mom IemperaWe, 3 WC&S, 719: (d) DDQ, CH$& room temperature. 60 min. then HPF6 (aqueous, 609b), 15 min. 100%. 

The chemical shift (t3C NMR) of central cationic carbon in 5 (15 1.82 ppm in DMSO-&) slightly upfields 

compared with those in 2 (R=H, 157.40, R=Me, 154.17 in CDC13) and does considerable upfield shift compared 

with those in 3 (R=H, 165.54; R=Me, 161.58 in CDC13). The upfield shifts observed in triazulenylmethy1 

cations are indicative of decreased charge densities on the cationic carbons and their enhanced thermodynamic 

stability. 

The p&+ value of 5 was determined spectrophotometrically at 24’C in a glycine (O.lM) - NaOH (O.lM) 

buffer solution @H 10) prepared in 50% aqueous CH3CN. By further alkalificadon with 20% NaOH. the half- 

neutralization point of 5 was beyond 14, and ~KR+ value was determined as 14.3.’ The ~KR+ value of 5 is 
much higher than that of 1, and the highest one as carbocation ever reported. 
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Tri(J-t-butyl-1-azulenyl)methyl hexafluorophosphate (1O)6 and tri(dt-butyl-1-azulenyl)methyl 

hextiuorophosphate (11)6 we= similarly synthesized starting from I-t-butylazulene, 6+butylazulene, and their 

3- and I-formyl derivatives, in good yields, respectively. 

Scheme II 

C + ss 

d 
9396- 

(I- 

The ~KR+ values of 10 and 11 were also determined to be 13.2 and 13.7, respectively. by the similar 

method for 5. These ~KR* values of 10 and 11 are rather close to that of 5, and fairly larger than that of 2 

(R=Me). 

The stability of 5 is also demonstrated by its highly negative reduction potential (El = -0.65 V versus SEC 

in MeCN by cyclic voltammetry using a Pt electrode with a scan rate of 100 mVs-l) as compared with 10 (-0.591, 
11 (-0.61) or 2 (R=H, -0.53; R=Me, -0.59; R=COOMe, -0.35). 

Large difference of ~KR+ values between 10 and 2 (R=Me) is indicating that the extreme stability of 10 is 

largely attributable to the steric effects of bulky t-butyl groups at 3-position. Since the contribution of C-C 

hyperconjugation of 3-r-butyl groups would be fairly small, it is unthinkable that the t-butyl groups effectively 

stabilize 10 by only its inductive effects. A little high ~KR+ value of 11 than that of 10 show that the inductive 

electron donating effect of 6-r-butyl groups by C-C hyperconjugation fairly contribute to the stability in addition 

to the steric effects of f-butyl groups. Therefore f-butyl group at 6-position largely stabilizes cation than one at 3- 

position by addition of its inductive effect. Consequently, the high pKR+ value of 5 is mainly attributable to 

steric effects of six bulky z-butyl groups in addition to the connibution of dipolar structure of three azulene rings. 
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